
Performance Analysis and Optimization on a Parallel

.
8

Atmospheric General Circulation Model Code

John Z, bll
Jet Propulsion Laboratory, CaUfornia  Institute of Technology, Pasadena, CA 91009

John D. Farrara
Department of Atmospheric Sciences, University of California, Los Angeles, CA 90025

Abstract
An analysis is presented of the primary factors influencing the performance of a parallel

implementation of the UCLA atmospheric general circulation model (AGCM)  on distributed-mem-
ory, massively parallel computer systems. Several modifications to the original parallel AGCM code
aimed at improving its numerical efficiency, load-balance and single-node code performance are
discussed, The impact of these optimization strategies on the performance on two of the state-of-
the-art parallel computers, the Intel Paragon and Cray T3D, is presented and analyzed. It is found
that implementation of a load-balanced ITT algorithm results in a reduction in overall execution
time of approximately 45% compared to the original convolution-based algorithm, Preliminary
results of the application of a load-balancing scheme for the Physics part of the AGCM code sug-
gest additional reductions in execution time of 10-15% can be achieved. Finally, several strategies
for improving the single-node performance of the code are presented, and the results obtained thus
far suggest reductions in execution time in the range of 35-45% are possible.

1. Introduction
The Earth’s climate system is characterized by complex interactions and feedbacks among

its components. General circulation models (GCMS) of the atmosphere and ocean are among the
most powerfhl  tools available for studies of the climate system and its variabdity. Numerical simu-
lations performed using GCMS are among the most computationally  expensive scientific applica-
tions because a large number of three dimensional physical fields need to be updated at each time
step by solving a system of nonlinear partial differential equations governing fluid motion on a
rotating sphere, and also because a very long simulation period is required to produce statistically
significant numerical results. Parallel computers are thus natural tools for GCM simulations,

An atmospheric GCM model was developed at UCLA by Arakawa and co-workers [1]
during the seventies, and the model is still being constantly upgraded by atmospheric scientists
there. The first parallel implementation of the UCLA AGCM model was developed as a collabora-
tive effort between Lawrence Livermore  National Laboratory and UCLA, The performance results
presented in the paper by Wehner et al. [2] revealed that the parallel efficiency of the code on large
numbers of processors (> 100) is mediocre. In other words, the code does not “scale” well to a large
number of processors. Here scalability refers to the reduction of execution time as more processors
are used for a fixed problem size. The main objective of our work is to analyze the AGCM algo-
rithm components and their parallel implementations from a computational performance perspec-
tive, find bottlenecks that hinder the parallel scalability of the code, and use better algorithms and

1



.

more efficient parallel implementation strategies tQ maximize the performance of the AGCM code
on scalable parallel systems.

This paper is organized as follows: Section 2 gives a brief overview of the structure of the
parallel UCLA AGCM code and an analysis of its parallel performance, Section 3 discusses our
optimization strategies on the code to improve its performance on massively parallel systems, Sec-
tion 4 presents a performance comparison between the modified parallel code and the original one,
Section 5 offers some of our thoughts on developing reusable template modules for GCM simula-
tions, and finally in Section 6 we present our conclusions.

2. Structure and performance of the parallel AGCM code
The UCLA AGCM code is a software package which simulates many physical processes.

The reader is referred to Suarez  et al, [3] and references therein for a more complete description of
the representations of the physical processes. As a result of the different algorithms used to repre-
sent the many different processes, the AGCM code is complex and heterogeneous. There are, how-
ever, two major components of the code: i) AGCM/Dynamics,  which computes the evolution of the
fluid flow governed by the primitive equations by means of finite-differences, and ii) AGCM/Phys-
ics, which computes the effect of processes not resolved by the model’s grid (such as convection on
cloud scales) on processes that are resolved by the grid. The results obtained by AGCM/Physics  are
supplied to AGCM/Dynamics  as forcing for the flow calculations. The AGCM code uses a three
dimensional staggered grid for velocity and thermodynamic variables (potential temperature, pres-
sure, specific humidity, ozone, etc.). TIds three dimensional grid is formed by the Arakawa C-mesh
[1] in the horizontal (latitude/longitude) directions with relatively small number of vertical layers
(usually much fewer than the horizontal grid points), A cell in such a grid is a cube in spherical
geometry with velocity components centered on each of the faces and the thermodynamic variables
at the cell center, The AGCM/Dynamics  itself consists of two main components: a spectral filtering
part and the actual finite difference calculations. The filtering operation is needed at each time step
in regions close to the poles to ensure the effective grid size there satisfies the Courant-Friedrich-
Levy (CFL) condition [4], a stability requirement for explicit time-difference schemes
time step is used throughout the entire spherical finite-difference grid.

- EEl

when a fixed

72% time on 16 nodes 36% time on 16 nodes
86% time on 240 nodes 49% time on 240 nodes

Figure 1. Execution t imes of major components in the UCLA AGCM code

A two-dimensional grid partition in the horizontal plane is used in the parallel implemen-
tation of the UCLA AGCM model. This choice of grid partition is based on the facts that column
(vertical) processes strongly couple the grid points which makes the parallelization  less efficient in
the column direction, and that the number of grid points in the vertical direction is usually small.

2



Each subdomain  in such a grid is a rectangular region which contains all grid points in the vertical
direction. With this grid partition, there are basically two types of interprocessor  communications
involved in the parallel AGCM simulation, Message exchanges are needed among (logically) neigh-
boring processors (nodes) infinite-difference calculations; non-nearest neighbor message-passing is
needed for implementing the spectral tiltering operations. Timing measurements on the main com-
ponents of the original parallel AGCM code, using the 2 x 2.5x 9 (lat x long x vertical) resolu-
tion which corresponds to a 144 x90x 9 grid, are shown in Figure 1,

As shown in Figure 1, the AGCM main body consists of a Dynamics module and a physics
module, with preprocessing and postprocessing parts excluded, Since preprocessing and postpro-
cessing steps are only performed once, whereas the main body part is iterated through a time step-
ping loop in the AGCM simulation, the latter is absolutely dominant in terms of execution time.
Comparing the two modules in the main body, we can see the Dynamics part is dominant in cost
especially on large numbers of nodes. Furthermore, our timing analysis on the Dynamics part indi-
cates that the spectral filtering is a very costly component with poor scalability to large number of
nodes (see Figure 1). Although the use of spectral filtering in the UCLA AGCM model improves
the computational eftlciency  of the finite-difference calculations by enabling the use of uniformly
larger time steps, the high cost of performing the filtering, however, offsets a portion of this perfor-
mance gain, The inferior performance of the filtering operation is due to the use of an inefficient fil-
tering algorithm and the existence of a severe load imbalance in the filtering stage.

It is clear from Figure 1 that in order to substantially improve the overall performance of
the AGCM code, some optimization must be done first on the filtering part of the code [2],

3. Optimization strategies and implementations in the parallel AGCM code
There are primary two ways to improve the performance of a parallel code running on a

distributed-memory message-passing computer. One way is to optimize its single-node perfor-
mance by using a more efficient computational algorithm, making more efficient use of data cache
or eliminating redundant operations in the code, which can usually be achkved  by restructuring the
data structures, rewriting loops and using appropriate compiler switches for optimization. Another
way is to improve its scalability (or parallel efficiency) to large numbers of processors so that one
can either reduce the solution time for a large problem by using more processors, or can solve
increasingly larger problems with more processors within a fixed amount of time, The scalability of
a parallel code is affected both by the ratio of communication cost to computation cost and the
degree of load imbalance in the code. As stated above, our timing results indicate the cost of spec-
tral filtering procedure is a substantial part in the parallel AGCM cude,  especially when running on
a large number of nodes, We therefore focused our first effort on improving the overall performance
of the filtering part in the AGCM code.

3.1) Spectral filtering in the UCLA AGCM model
The filtering algorithm used in the UCLA AGCM model is basically a set of discrete Fou-

rier filters specifically designed to damp fast-moving inertia-gravity waves near the poles, These
wave modes become numerically unstable when the CFL condition is violated in the vicinity of the
poles as a result of the increasingly smaller zonal grid distances as one approaches the poles in a



uniform longitude-latitude grid. The filters contain a latitudinal dependence but are applied over the
complete longitudinal domain on every vertical layer, As discussed in [1], the filtering operation
takes the form of an inverse Fourier transform in wavenumber space as

$’(0 = *,~1$(s)3(s)e;Ais (1)

where $(s) is the Fourier transform of a generic variable $(s) to be ffltered, 3(s) is a prescribed
function of wavenumber and latitude, but is independent of time and height. In particular, two types
of filtering are performed in the UCLA AGCM code. One is the so called “strong tlltering”  which is
applied to about one half of the latitudes (poles to 45° ) in each hemispher~  the other is a “weak fil-
tering” which is applied to about one third of the latitudes (poles to 60° ) in each heinkphere. The
convolution theorem for Fourier transforms states that the filtering as defined in (1) is mathemati-
cally equivalent to the convolution

M

$’(0 = ~ S(n)$(i - n). (2)
5=1

In the original AGCM code, filtering was performed using the convolution form in (2), In its paral-
lel implementation, the summation defined in (2) was implemented in several ways, involving either
communications around “processor rings” in the longitudinal direction, or communications in
binary trees [2]. Letting N denote the number of grid points and P the number processors in the lat-
itudinal direction and sinw no partial summation is performed during the data transfer, the ring
approach requires PlogP messages and a total transfer of NP data elements; the bhuwy tree
requires 0(2P) messages and a transfer of O(ZVP + ZVlogP) data elements [2].

The high cost of the filtering compared to the rest of the Dynamics module as shown in
Figure 1 stems from two important factors. The first is the use of convolution formulation (2) in
physical space for the filtering, Assuming a three-dimensional grid for Illtering  with dimensions
N x M x K, where N, M, K, are dimensions in longitudinal, latitudinal and vertical directions,
respectively, the computational cost of doing convolution on the grid is of order 0(N2 x M x K),
whereas the cost for the rest of Dynamics code is of order O(N x M x K). The second is the exist-
ence of a severe load imbalance caused by the fact that only subdomains  at high latitudes require fil-
tering. Solutions to these problems are somewhat obvious: (i) use the fast Fourier transform (FIT’)
instead of performing direct convolution for the filtering, and (ii) perform load balancing before fil-
tering by redistributing data to be filtered from processors containing high latitude subdomains  to
processors containing low latitude subdomains  which either have very little filtering to do or are
completely idle during the illtering  stage.

3.2) Efficient parallel spectral filtering
Since the spectral filtering is applied to lines of grid points at high latitudes and the grid

decomposition for the UCLA AGCM code is a two dimensional decomposition in the horizontal
plane, the FFT operation requires interprocessor communication. There are at least two possibilities
to parallelize  the FFT Illtering.  One is to develop a parallel one dimensional FFT procedure for pro-

4



cessors  on the same rows in the processor mesh, so that this procedure can be applied to every line
of data to be filtered. The second approach is to partition the data lines to be filtered and redistribute
them among processor rows in the latitudinal direction so that FFlk on each data line can be done
locally in each processor. The second approach essentially involves a data array transpose. These
ITT ffltering approaches have a computational cost of O(N x logN x M x K), Again letting N
denote the number of data elements and P denote the number of processors in the latitudinal direc-
tion, the approach using the parallel one dimensional R requires O(PlogP) messages and a
transfer of O(NlogZV) data elements, while the approach using a local FFI’ after a data transpose
requires O (P2) messages and a transfer of O(N) data elements. Therefore the first approach
requires fewer messages but exchanges larger amounts of data than the second approach.

We chose to implement the second approach for the spectral filtering in the AGCM code.
The main reason for our choice is the relative simplicity of implementing the data transpose and the
possibility of using highly efficient (sometimes vendor provided) FFT library codes on whole latitu-
dinal data lines witiln each processor.

Equator

0+0+0 “’”
7

0+0+0 ““”
7 Y

1+1+2 ● * *
3

8+8+8 ● “ ”
/ \

Pole

0+6+1 ●  . *
+0+01

1 +2+0 .**
+1+2

7+0+0 ● **
/

Figure 2. An illustration of data row redistribution for a load balanced filtering.

3.3) Load-balanced parallel FFT filtering
To solve the load-balance problem in filtering, we need to redistribute the data rows to be

filtered along the latitudinal direction, In the UCLA AGCM code, the spectral filtering is performed
at each time step before the finite-difference procedures are called, Weak and strong filterings are
performed on different sets of physical variables, one variable at a time in the original AGCM code.
‘Ib maximize the performance efficiency from the load balance procedures, we reorganized the fil-
tering process so that all weakly tlltered variables are filtered concurrently, as are all strongly fil-
tered variables. This change is possible because there is no data dependency among weakly filtered
variables, nor among strongly filtered variables in the filtering process. Based on these consider-
ations, we decided to implement a generic load balancing module which does the following: given
an M x N processor mesh, with M processors in the latitudinal direction and N processors in the
longitudinal direction, with L variables tQ be filtered (weakly or strongly), each with Rj

(j = 1,, ,L ) rows of data to be tlltered,  redistribute the data rows in the longitudinal direction so
that after redistribution, each processor will contain approximately (since total number of data rows
to be filtered are usually not divisible by N)



EEEEl”m
Figure 3. Data row transpose in

shown in Figure 2.
latitude direction following the row redistribution

[E JR j / N
j=l

(3)

rows to be filtered, If it could be assumed that exaetly  half of the data rows in one hemisphere are to
be filtered, which is the case for the strong filtering in the AGCM code, the implementation of data
redistribution for load balancing would be a relatively simple task, All that would be required in this
ease is to redistribute data rows in a way which is symmetric about the 45° latitude line in each
hemisphere. Since we need to do load balancing for both weak and strong filterings, a more general
scheme is needed. We therefore decided to implement a code module which ean produce a balanced
load in (3) regardless of the number of rows to be filtered in each hemisphere. Figure 2 shows an
example of how data rows for three variables are redistributed in a hemisphere in an M x 8 proces-
sor mesh, The load redistribution is followed by a data row transpose and redistribution among pro-
cessors in the longitudinal direction. Figure 3 shows the data row transpose performed after the row
redistribution shown in Figure 2. The actual FFT filtering is performed on data rows after the data
transpose, which is then followed by inverse data movements to restore the data layout which
existed prior to the filtering,

Due to the generality required for the load-balancing of the parallel FFT module, some
non-trivial set-up code is needed to construct information which guides the data movements for the
load-balancing and load-balanced parallel FFT, The set-up involves substantial bookkeeping and
interprocessor  communications. Its cost is not an issue for a long AGCM simulation since it is done
only once, and its cost is also nearly independent of AGCM problem size,

3.4) Load balancing the physics component
The Physics component of the AGCM code consists of a large amount of local computa-

tions with no interprocessor  communication required with the two-dimensional partition of the grid.
The measured parallel efficiency of the physics component with a 2 x 2,5x 29 grid resolution is
about 50% on 240 nodes on Cray T3D. Since there is no communication cost, it is only the load-
imbrilance  in the column physics processing that drags down the parallel efficiency. The distribution
of computational load in the physics component varies dynamically with space and time in the
AGCM simulation. The amount of computation required at each grid point is determined by several
factors, including whether it is day or night, the cloud distribution, and the amount of cumulus con-
vection determined by the conditional stability of the atmosphere. Adding to the difficulty of phys-
ics load-balancing is the unpredietability of the cloud distribution and the distribution of cumulus
convection, which implies an estimation of computation load in each processor is required before
any eftlcient  load-balancing scheme can proceed.



EE3 4 3 4

1 2 1 2

3 4 3 4

1 2 1 2

b Em3 3 4 4

3 3 4 4

1 1 2 2

1 1 2 2

Figure 4. Scheme 1: Cyclic data shuf-
fling among 4 processors to achieve a
balanced load distribution. Each data
piece is indexed with the id of the pro-
cessor where it is to be processed.

Several possibilities of achieving load-balancing have been considered. One way to
achieve a balanced load distribution is to perform a cyclic data shuffling among all processors. Sup-
pose the total number of processors is N, each processor divides its local data to be processed into N
pieces, sends (N - 1) pieces of the data to other processors, and receives (N - 1) pieces of data
from other processors. Figure 4 shows such a data shutlling  among four processors. The complete
data shuffling as shown in Figure 4 guarantees a balanced load distribution as long as the load distri-
bution within each processor is close to uniform in space, a reasonable assumption when N is large.
The main drawback of this approach is the cost of performing all-to-all communications with a
complexity of O(NZ), and the division of each local data into N equal pieces for N processors does
not seem to be computationally  efficient when N is large.

Node id= 1

I

Node id= 2

I

Node id =3

I

Node id =4
Load =65 Load. 24 Load =38 Load =15

A: Initial load distribution with original node id.

New node id= 1

I

New node id= 3

I

New node id =2

I

New node id =4
Load =65 Load =24 Load =38 Load =15

2
+?lR

B: Node ids are sorted according to local data loads.
Required data moves are shown.

Node id= 1 Node id= 2 Node id =3 Node id =4
Load =39 Load = 24+11 Load =36 Load = 15+18+2

C: Load distribution after load-balancing.

Figure 5, Scheme 2: An alternative which optirnizxx  communication cost.

An alternative to a complete data shufiling  for load balancing, but also guaranteeing a
good load distribution, is to use an approach similar to the one discussed in the previous section for
filtering operations. First, the computation load for each processor needs to be computed or esti-
mated by some means. Let us look at a specific example for the sake of our discussion. Figure 5
illustrates the steps needed to balance the load among four processors. In Figure 5A, the computing
load in each processor has been determined, and an integer weight is assigned to each local load. All

7



the nodes are then assigned a new node id through a sorting of all local loads, The sorting of local
loads is performed to simplify subsequent data movement which attempts to minimize the amount
of interprocessor  communication, With the new node ids and weights of local load available, the
required data moves can be carried out in a way similar to that for balancing the filtering load, as
shown in Figure 5B. Figure 5C shows the new load distribution after the data movement. It can be
seen that the communication complexity of this load-balancing approach is O(N), a significant
improvement over the complete data shuffling in scheme 1. However, a potentially significant over-
head is incurred in operations to make the optimized data moves possible which involve a number
of global communications and a substantial amount of local bookkeeping.Thk overhead cost was
not a serious performance issue in the load-balancing for filtering because it is the cost from a pre-
processing step that is done only once during the entire execution of the AGCM code, but the over-
head for physics load-balancing cannot be overlooked because it is associated with the cost of each
physics load-balancing. In addition, a decomposition of a local data load into many parts with dif-
ferent weights may not be a convenient thing to do.

Node id= 1 Node id= 2 Node id =3 Node id =4
Load =65 Load =24 Load =38 Load =15

A: Initial load distribution in each processor.

Node id= 1 Node id = 2 Node id =3 Node id =4
Rank = 1 Rank = 3 Rank = 2 Rank. 4
Load =65 Load =24 Load =38 Load =15

f 7 J . . t

B: Nodes are assigned ranks. First pailwise data moves are shown.

Node id= 1

I

Node id= 2
Rank = 1 Rank = 3
Load =40 Load =31

I  ~~f~ l~:f:

C: Nodes are assigned ranks. Second pairwise data moves are shown.

Node id= 1

I

Node id= 2

I

Node id =3

I

Node id =4
Load =36 Load = 31+4 Load = 31+4 Load =36

D: Load distribution after second data movement.

Figure 6. Scheme 3: Load-balancing with pairwise data exchanges.

The analysis of load-balancing scheme 2 and 3 lead us to think that it may be more practi-

8



c-al in our case to devise a load-balancing strategy that maybe less robust (if it is applied only once),
but more cost-efficient and easier to implement, The approach that we decided to adopt requires
only pairwise interprocessor  communications for data movement and a small amount of bookkeep-
ing. The steps for this scheme can still be illustrated by using the previous example for four proces-
sors, as shown in Figure 6.The scheme also begins with an evaluation of the local load in each
processor, as shown in Figure 6A The data load is sorted and a rank is assigned to each processor as
a result of the sorting, and a pairwise data exchange between processors with rank i and rank
N - i + 1 is initiated, as shown in Figure 6B. Due to the limitation of pairwise data exchange, the
resulting load distribution after the first data move may not be satisfactory. If this is the case, the
load sorting and pairwke  data exchange can be repeated (as shown in Figure 6C). Figure 6D shows
the load distribution after the second data move, Since each load-balancing cycle (sorting and pair-
wise data moves) is relatively low in cost, the cost of performing it a few times could still be less
than that of the two previous schemes discussed.

The number of sorting and pairwise communication steps needed in scheme 3 to achieve a
satisfactory load-distribution clearly depends on the initial load distribution. To evaluate the effec-
tiveness of scheme 3 for load-balancing the actual Physics component code, we first implemented
the load-sorting part in scheme 3, and used it as a tool to perform load-balancing on the physics
component and to evaluate the results without actually moving the data arrays around, To estimate
computing load in each processor, a timing on the previous pass of physics component was per-
formed at each processor and the result was used as an estimate for the current physics computing
load, ‘Ihbles 1-3 show the simulated results on 64, 126 and 252 nodes of a Cray T3D, With  P pro-
cessors, the percentage of load-imbalance shown in the last column of the tables is defined as

AverageLoad =
[i,LOcalLOadl/p

PercentageOfLoadImbalance = (MaxLoad - AverageLoad)
AverageLoad

‘lhble 1: Load-balancing simulation for Physics with a 2 x 2.5 x 29 grid
resolution on a 8 x 8 node array on Cray T3D

Code status
Max load Min Load % of load-
(seconds) (seconds) imbalance

I I I

t Before load-balancing 11.00 4,90 37%
I I I

After fist load-balancing 7,70 6.20 9%

After second load-balancing 7.10 6.30 6%

Scheme 3 can be seen as an iterative scheme that converges to a load-balanced state from a given
initial load-distribution state. The “convergence rate” of the scheme clearly depends on the initial
state as the results in Tables 1-3 indicate. On 126 and 252 nodes, it can be seen from Table 2 and 3
that application of the scheme twice to the physics component can reduce the percentage of load-
imbalanw to a fairly reasonable level, One advantage of scheme 3 is its flexibility in making a com-

9



promise between the cost and quality of the final load-balance. A pairwise data exchange is only

.

needed when the load difference in the pair of nodes exceeds some tolerance, and the iteration can
stop as soon as the percentage of load-imbalance falls within a prescribed tolerance. To apply
scheme 3 multiple times in an efficient way, the actual data movement among processors can be
deferred until multiple sorting and load-averaging among processor pairs are performed. The final
data movement cost can be minimized with a little extra communication among processors during
the sorting and load-averaging stage, Efficient load estimate is a difficult task in actual load-balanc-
ing implementation due to the d ynamic nature of the Physics computing, It seems to us a reasonable
approach is to measure the actual local Physics computing cost once for every M time steps for a
predetermined integer M, The measured cost will then be used as the load estimate in Physics load-
balancing in the next M time steps. When applying the one-pass scheme 3 on 64 processors of a
Cray T3D, we saw a 30% speed-up in the execution time of Physics module.

‘lWle 2: Load-balancing simulation for Physics with a 2 x 2.5x 29
grid resolution on a 9 x 14 node array on Cray T3D

Code status Max load Min Load % of load-
(seconds) (seconds) imbalance

Before load-balancing 5,20 2.50 35%

After first load-balancing 4.00 3.14 1270

After second load-balancing 3.52 3.22 5%

‘Ihble 3: Load-balancing simulation for Physics with a 2 x 2.5x 29
grid resolution .on a 14x 18 node array on Cray T3D

Code status Max load Min Load % of load-
(seconds) (seconds) imbalance

Before load-balancing 3.34 1.12 48%

After first load-balancing 2.20 1,70 12.5%

I After second load-balancing I 1,92 I 1.80 I 6% I

3.4) Single node performance optimization
With the use of the load-balanced FFT filtering module, we have been able to reduce the

cost of tlltering  significantly in the parallel AGCM code (see Section 4). Whh the 2 x 2.5 x 9 res-
olution on 240 nodes, for example, the filtering cost dropped from 49% of the cost doing Dynamics
part to about 21%. Our timing of the code indicates the cost of communication for exchanging val-
ues at ghost grid points for the finite-differencing  is relatively insignificant, usually around 105ZO  of
the cost of the Dynamics component on 240 nodes. With a load-balanced physics component, we
expect the overall execution time of the AGCM code be reduced by 1(P 15% on 240 nodes. We now
turn our discussion to the issue of single-node performance optimization for the AGCM wale. As is
typical for a real-world application, the overall performance of the parallel AGCM code is well

10



below the peak performances on both Intel Paragon and Cray T3D nodes, which is usually an indi-
cation that the cache efficiency of the code is poor. Our main goal is to improve the single-node per-
formance of the code - minimize the execution time of the code on a single processor - with a
machine-independent and problem-size robust approach (i.e. without resorting to any assembly
coding). We selected the advection  routine from the Dynamics component and a routine involved in
the longwave radiation calculation from the Physics component as the representative candidates for
single-node performance analysis and optimization because of the heavy local computing involved
in these routines and their significant cost in the AGCM code. Our optimization effort started from
improving some of the more obvious code segments, such as eliminating or minimizing redundant
calculations in nested loops, replacing appropriate loops by Basic Linear Algebra Subroutines
(BLAS) library calls for vector copying, scaling and saxpy operations, and enforcing loop-unrolling
on some blg loops, We also tried to breakdown some very large loops involving many data arrays in
hoping to reduce the cache miss rate. When applying these strategies to the advection routine, we
were able to reduce its execution time on a single Cray T3D node by about 40%,

BLAS routines are usually significantly faster than average programmer’s hand-coded
loops in a high-level programming language for matrix-vector types of data processing because they
were optimized for pipelining computing and cache efficiency with assembly coding. It seems,
however, difficult for us to utilize the BLAS library beyond some low-level routines in a few places
in our code. In a code based on finite-differencing  schemes as the AGCM code, it is usually hard to
cast major parts of computation into matrix-vector type operations. Instead, we found that a large
part of the computations in our selected routines can be converted into what we call “pointwise vec-
tor-multiply”, which, for example, have the following form in a two-dimensional nested loop:

DOj=l,  iV
DOi=l,  M

C(i, j) = A(i, j) x I?(i,s)
ENDDO

ENDDO
where the subscripts can be either a constant or equal to j, The computation in the above loop is not
one of the operations defined in the current BLAS library (e.g. on Cray T3D). We think one possi-
bility to achieve good performance for such a loop is to develop an optimized library routine in
assembly language which can recursively perform the following operation on two vectors
a = {al, az, .,,, an} andb = {bl, bz, . . ..bm}

a63b=  {albl, a2b2, .,., ambnl, an, +lbl,  . . ..a2nzbm.  . ..] (4)

where it is assumed that n is divisible by m. The interface of the routine can be such that it takes as
input a set of data arrays and returns the result array. If some optimization on such a pointwise vec-
tor-multiply operation is possible in terms of cache and pipelining, there is a good chance for us to
improve single-node performance for the AGCM code in a portable and robust fashion,

The general idea of cache-efficiency optimization is to explore data locality in an applica-
tion so that the data in the cache can be reused as much as possible. In a finite-difference application
such as the AGCM code, a major part of the local computations lie in the evaluations of finite-dif-
ference equations that involve a number of discrete fields corresponding to physical variables

11



‘Jhble 4: AGCM timings (seconds/sinmlated  day) with old filtering module on Intel Paragon
grid resolution: 2 x 2,5x 9

Dynamics Total time
Node mesh Dynamics speed-up (Dynamics and

Physics)

1X1 8702 1.0 14010

4 x 4 848.5 10.3 1177

8 x 8 366 23.8 443.5

8x30 186 46.8 216

defined on computational grids. At each grid point indexed by (i, j, k), the following type of code
frequently occurs

r(i, j, k) = D1fl(i,  j,k)+ . . . +Dmfnl(i,  j,k), (5)

wherefi (i= 1, . . . . m) are discrete fields and Di (i = 1 . . . m) are stencil operators. Although it seems
natural, as done in the AGCM code, to allocate storage corresponding to discrete fields in (5) as sep-
arate data arrays, the cache efficiency in computing (5) on those separate arrays is usually rather
poor when the typical array size is much larger than the cache size or when data stored in a large
number of arrays are referenced in a statement of form (5), because in such cases the cache-miss
rate can be very high. One alternative to allocating separate data arrays is to declare a single array
for storing all the discrete fields in (5). In a Fortran code, one ean thus define an “block-oriented”
array of the form

f (m, idim, jdim, kdim). (6)

The use of a data array of the form (6) to evaluate (5) could, in principle, reduce the cache-miss rate,
because grid variables in the neighborhood of a certain cell are stored closer to each other in mem-
ory than the case when separate arrays are used. When data arrays of the size 32x 32x 32 in form
(4) are used, our test code evaluating a seven-point Laplace stencil applied to several discrete fields
showed a speed-up a factor of 5 over the use of separate arrays on the Intel Paragon, and a speed-up
factor of 2.6 was achieved on Cray T3D for the same size data arrays. Encouraged by this result, we
tried the use of block array in the advection routine, where about a dozen three-dimensional arrays
were combined into one single array. A performance comparison between the mde with block array
and the code with separate arrays did not show any advantage of using the block array. For some
sizes of data array, the code with the block array underperformed the code with separate arrays. A
more careful examination of the advection  routine revealed some conflicting factors regarding the
seleetion of a good data structure for cache efficiency. A basic fact is that the dry-convection routine
contains many different types of array-processing loops which reference a varying number of data
arrays. The block array may be a better data structure for cache efficiency in a loop referencing all
the grid variables in the block array, but it could be a worse data structure (than the separate arrays)
for code in other loops which only reference a small subset of grid variables in the block array. It is

12



.

therefore not easy to predict the overall effect on the cache performance for a non-trivial code when
a block array or separate arrays are used. A side-effect of using the block array is the poor readabil-
ity of the code, which makes it error-prone and harder to debug.

4. Performance studies
~mings have been performed on the Intel Paragon and Cray T3D (Some timing on IBM

SP-2 were also performed, but are not shown here) for the parallel AGCM code with the new filter-
ing module and the results were compared to those from the original code. The message-passing
portability of the IUtering module was achieved by using MPI protocols in the code. Since the

‘lhble S: AGCM timings (seconds/simulated day) with new filtering module on Intel Paragon
grid resolution: 2 x 2.5x 9

Dynamics Total time
Node mesh Dynamics speed-up

(Dynamics and
Physics)

1X1 8075 1.0 11225

4 x 4 639.0 12.6 992.6

8 x 8 207.5 38.9 306.0

8x30 87.2 92.6 119.0

‘Ihble 6: AGCM timings (seconds/simulated day) with old filtering module on Cray T3D
grid resolution: 2 x 2,5x 9

Dynamics Total time
Node mesh Dynamics speed-up (Dynamics and

Physics)

1X1 3480 1.0 5600

4 x 4 339 11,3 470

I 8 x 8 I 146 I ~6.3 I 177

8x30 74 51.9 87.5

UCLA AGCM code uses a NETCDF input history file and we do not have a NETCDF library avail-
able on the Paragon, we had to develop a byte-order reversal routine to convert the history data to
use on Intel Paragon, We discuss here only timing results obtained on the Intel Paragon, which are
qualitatively similar to those obtained on the Cray T3D and the IBM SP-2, Tables 4-7 show com-
parisons of execution time for the Dynamics part and for the entire AGCM code (including the
Physics part) using the 9-layer model on Intel Paragon and Cray T3D. Tables 8 and 9 show a com-
parison of costs for doing the filtering using different versions of the filtering module with the 9-
layer model, and Tables 10-11 show the costs of filtering in the 15-layer model on Paragon and

13



.

Table 7: AGCM timings (seconds/simulated day) with old filtering module on Cray T3D
grid resolution: 2 x 2.5x 9

Dynamics Total time
Node mesh Dynamics speed-up (Dynamics and

Physics)

1X1 3230 1,0 4990

4 x 4 256 12.6 397

I 8 x 8 I 83 I 38.9 I 122 I
8x30 35 92.3 48 I

‘Ihble 8: ‘Ibtal  filtering times (seconds/simulated day) on Intel
Paragon for the 2 x 2.5 x 9 grid resolution

r 1 1 , 4

Node mesh Convolution
FFT without ITT with load
load balance balance

4 x 4 309.5 111.4 87.7

4 x 8 240.0 88,0 53.7

8x8 189.5 66,4 38.2

4X30 99.6 43.7 22,2

8x30 90,0 37.5 18,5

T3D, For all the timing runs, a 2 x 2.5 horizontal grid resolution is used. In comparison to the old
AGCM code, the Dynamics component in the new code is a little more than twice as fast on 240
nodes. The scaling (or speed-up) of the entire code also improved significantly, which is clearly a
result of the load-balanced filtering. The load-balanced FFT filtering module runs about five times
faster than the old convolution faltering module on 240 nodes for both the 9-layer model and the 15-
layer model. Tables 8-9 and 10-11 show that the scaling of load-balanced FF’f filtering for the 9-
layer model is about 4.74 running on 240 nodes versus running on 16 nodes with a parallel effi-
ciency of 32Y0, and the scaling of load-balanced faltering for the 15-layer model is about 5.87 with a
parallel efficiency of 39%. The improved efficiency for the 15-layer model refleets the higher ratio
of local computational load over interprocessor  communication cost when more vertieal  layers are
added to the AGCM model. Although not shown here, we found the scaling of the whole AGCM
code for the 15-layer model is about the same as the 9-layer model, This could be the result of the
fact that in the 15-layer model, some additional load-imbalance is introduced in other parts of the
AGCM code, We would expect even better seahg  be achieved for the parallel filtering as well as
for the overall AGCM code for higher horizontal and vertical resolution versions, The execution
times also consistently show that the parallel AGCM code runs about 2,5 times faster on Cray 3D
than on Intel Paragon

14



~ble  9: ‘IMal  filtering times (seconds/sinmlated day) on Cray T3D
for the 2 x 2.5x 9 grid resolution

Node mesh Convolution
FFT without ITT with load
load balance balance

I 4 x 4 I 123.5 I 44.6 I 35.1

I 4 x 8 I 96.0 I 3 5 . 2 I 21.5

I 8 x 8 I 75.8 I 26.4 I 15.3

I 4X30 I 39.6 I 17.5 I 8.9

8x30 36.0 15.0 7.4

‘lhble 10: ‘lMal filtering times (seconds/sinmlated  day) on Intel Paragon for
the 2 x 2.5x 15 grid resolution

I 1 1 t f

Node mesh Convolution FFT without ITT with load
load balance balance

4 x 4 802 304 221

4 x 8 566 205 118

8 x 8 422 150 85

4X30 217 % 49

8x30 188 81 37

5, Software design issues for GCM applications
GCM simulation codes are typically very large software packages containing tens of thous-

ands lines of code and hundreds of source code tiles, which were developed over a long period of
time and are often still being updated by different groups of scientists. Another goal of our work is
trying to develop a framework for developing portable, reusable and maintainable library-type mod-
ules which will be useful for current and fimre GCM applications.

The original parallel AGCM code was implemented in F77 with an internal message-pass-
ing interface. The portabdity of the code on distributed memory multiprocessors was achieved by
using two macro utilities for message-passing interfaces and memory-allocation protocols. This
macro-oriented approach unfortunately also introduced some complications to the code mainte-
nance and modifications. First, the code needs to go through two macro preprocessors before a stan-
dard Fortran 77 compiler can be applied, which ean cause problems when moving the code to a new
machine  because macro preprocessors may behave differently. Embedding macros in the code also
make changes to the code error-prone if one is not familiar with how the macros will be expanded,
We thhdc portability for AGCM code can be achieved in a simpler and more reliable way. Our
approach is to detlne generic interfaces for possibly machine-dependent operations such as mes-
sage-passing interfaces and memory management, but the implementation of the interfaces is

15



l’hble 11: ‘Ma] filtering times (seconds/simulated day) on Cray T3D for
the 2 x 2.5 x 15 grid resolution

Node mesh Convolution FFT without FFI’ with load
load balance b a l a n c e

4 x 4 320 121 88

I 4 x 8 I 226 I 82 I 47

I 8 x 8 I 168 I 60 I 34

I 4X30 I 86 I 38 I 19

I 8x30 I 75 I 32 I 15

wrapped up in a very small number of subroutines, These subroutines are selectively compiled
depending on the specific machine where the code is to run, We believe our approach can reduce the
machine-dependent portion of the code to a minimum and thus make the maintenance and modifica-
tion to the code much easier, The old parallel AGCM code is also hard to modify due to the spread
of many global variables in various parts of the code, When we tried to make a small change to
some data structure used in the Physics component for load-balancing, for example, it turned out
changes had to be made in many parts of the code for it to work, which is both time-consuming and
error-prone. We are rewriting parts of the AGCM code in Fortran 90 with the principle of data
encapsulation and minimization of global data, which we believe will save the cost of maintaining
and modifying the code in the long run.

We are also identifying common numerical algorithms and other operation components in
GCM applications, and developing code modules which are reusable and extensible (as application
templates) for different GCM applications. In our view, candidate components for GCM applica-
tions include efficient finite-difference kernels, parallel spectral filters, communication modules for
exchanging ghost-point values at domain-partition boundaries and enforcing (physical) periodic
boundary condition, load-balance modules, and fast (parallel) linear system solvers for implicit
time-differencing  schemes. We believe that, within the scope of GCM applications, these code com-
ponents can be developed in a unified, highly modular and efficient manner, and we thhk  an
objected-oriented approach (at least for building the infrastructure of a generic GCM application)
implemented in an advanced scientific computing language like Fortran 90 should be used in the
code development, With these code components available, the prototyping and implementation of a
new, portable and efficient GCM software package on distributed-memory multiprocessors (and on
other types of systems as well) will be a lot faster and easier.

6. Conclusion and future work
We have presented our analysis and optimization strategies to improve the overall perfor-

mance of the parallel UCLA AGCM code on massively parallel computers by implementing a load-
balanced ITT filtering module for the Dynamics component, and a load-balancing module for the
physics component. Performance comparisons of the AGCM codes with old and new spectral fMer-
ing modules show that a speed-up of a factor 2 is achieved as a result of our work on 240 nodes. Our
analysis shows that a load-balanced physics component could improve the AGCM code perfor-

16



mance  by an additional 10-15%. We then discussed our preliminary efforts on single-node perfor-
mance optimization for selected subroutines from the AGCM code, including the lessons we
learned from our attempts to improve the cache efficiency, and the impact an optimized pointwise
vector-multiply routine could have on the code performance. We also presented our views on mak-
ing better software designs for GCM applications through developing efficient, reusable and modu-
lar code components, A complete implementation of a multiple-pass load-balancing module for the
Physics component will be finished soon. Single-node performance tuning for cache-based RISC
processors is the other on-going effort in our performance optimization on the AGCM code.

Acknowledgments
This work was supported in part by the NASA High Performance Computing and Com-

munication for Earth and Space Sciences Project under Grant NAG 5-2224. The authors wish to
thank Dr. Robert D. Ferraro of Jet Propulsion Laboratory and Professor C, Roberto Mechoso of
University of California, Los Angeles, for their encouragement and support of this work. The inves-
tigations reported here were conducted on a Intel Paragon operated by the Concurrent Supercom-
puting Consortium at Caltech and a Paragon located at the Jet Propulsion Laboratory, on a Cray
T3D system operated by the Jet Propulsion Laboratory, and on IBM SP2 operated by NASA Ames
Research Center.

References:
1. A, Arakawa  and V. Lamb, “Computational Design of the Basic Dynamical Processes of the

UCLA General Circulation Model.”, Methods in Comp, Phys. 17 (1977) 173-265.

2, M,F. Wehner, A.A, Mirin, P.G. Eltgroth,  W.P. Dannevik, C,R,  Mechoso,  J. Farrara,  J.A, spahr, ”
Performance of a Distributed Memory Finite-Difference Atmospheric General Circulation
Model,”, Parallel Computing 21, 1655-1675, 1995.

3. M,J. Suarez, A, Arakawa, and D.A. Randall, “The Parameterization of the planetary boundruy
layer in the UCLA General Circulation Model: Formulation and Results.”, Mon. Wea. Rev., 111,
2224-2243,1983.

4. “Introduction to the UCLA General Circulation Model: Its History, Present State and Future
Direction”, UCLA Atmospheric Science 281 Course Note, Winter 1995.

17


